Fusion systems over a Sylow p-subgroup of $${\text {G}}_2(p)$$ G 2 ( p )

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on $p$-soluble groups with a generalized $p$-central or powerful sylow $p$-subgroup

let $g$ be a finite $p$-soluble group‎, ‎and $p$ a sylow $p$-subgroup of $g$‎. ‎it is proved‎ ‎that if all elements of $p$ of order $p$ (or of order ${}leq 4$ for $p=2$) are‎ ‎contained in the $k$-th term of the upper central series of $p$‎, ‎then the $p$-length of‎ ‎$g$ is at most $2m+1$‎, ‎where $m$ is the greatest integer such that‎ ‎$p^m-p^{m-1}leq k$‎, ‎and the exponent of the image of $p$...

متن کامل

a note on the normalizer of sylow 2-subgroup of special linear group $sl_2(p^f)$

let $g={rm sl}_2(p^f)$ be a special linear group and $p$ be a sylow‎ ‎$2$-subgroup of $g$‎, ‎where $p$ is a prime and $f$ is a positive‎ ‎integer such that $p^f>3$‎. ‎by $n_g(p)$ we denote the normalizer of‎ ‎$p$ in $g$‎. ‎in this paper‎, ‎we show that $n_g(p)$ is nilpotent (or‎ ‎$2$-nilpotent‎, ‎or supersolvable) if and only if $p^{2f}equiv‎ ‎1,({rm mod},16)$‎.

متن کامل

on p-soluble groups with a generalized p-central or powerful sylow p-subgroup

let $g$ be a finite $p$-soluble group‎, ‎and $p$ a sylow $p$-sub-group of $g$‎. ‎it is proved‎ ‎that if all elements of $p$ of order $p$ (or of order ${}leq 4$ for $p=2$) are‎ ‎contained in the $k$-th term of the upper central series of $p$‎, ‎then the $p$-length of‎ ‎$g$ is at most $2m+1$‎, ‎where $m$ is the greatest integer such that‎ $p^m-p^{m-1}leq k$‎, ‎and the exponent of the image of $p$...

متن کامل

a note on the normalizer of sylow $2$-subgroup of special linear‎ ‎group ${rm sl}_2(p^f)$

let $g={rm sl}_2(p^f)$ be a special linear group and $p$ be a sylow‎ ‎$2$-subgroup of $g$‎, ‎where $p$ is a prime and $f$ is a positive‎ ‎integer such that $p^f>3$‎. ‎by $n_g(p)$ we denote the normalizer of‎ ‎$p$ in $g$‎. ‎in this paper‎, ‎we show that $n_g(p)$ is nilpotent (or‎ ‎$2$-nilpotent‎, ‎or supersolvable) if and only if $p^{2f}equiv‎ ‎1,({rm mod},16)$‎.

متن کامل

A representation of the p-sylow subgroup of Perm(Fpn) and a cryptographic application

This article concerns itself with the triangular permutation group, induced by triangular polynomial maps over Fp, which is a p-sylow subgroup of Perm(Fp ). The aim of this article is twofold: on the one hand, we give an alternative to Fp-actions on Fp , namely Z-actions on Fp and how to describe them as what we call “Z-flows”. On the other hand, we describe how the triangular permutation group...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2017

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-017-1969-x